
10/6/11

1

1
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Programming with OpenGL
Part 2: Complete Programs

2
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Objectives

• Refine the first program
- Alter the default values
-  Introduce a standard program structure

• Simple viewing
- Two-dimensional viewing as a special case of

three-dimensional viewing

• Fundamental OpenGL primitives
• Attributes

10/6/11

2

3
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Program Structure

• Most OpenGL programs have a similar structure
that consists of the following functions
- main():

•  defines the callback functions
•  opens one or more windows with the required properties
•  enters event loop (last executable statement)

- init(): sets the state variables
•  Viewing
•  Attributes

-  callbacks
•  Display function
•  Input and window functions

4
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

simple.c revisited

• In this version, we shall see the same
output but we have defined all the relevant
state values through function calls using
the default values

• In particular, we set
- Colors
- Viewing conditions
- Window properties

10/6/11

3

5
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

main.c

#include <GL/glut.h>

int main(int argc, char** argv)
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("simple");
 glutDisplayFunc(mydisplay);

 init();

 glutMainLoop();
}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

6
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

GLUT functions

• glutInit allows application to get command line
arguments and initializes system

• gluInitDisplayMode requests properties for the
window (the rendering context)

-  RGB color
-  Single buffering
-  Properties logically ORed together

• glutWindowSize in pixels
• glutWindowPosition from top-left corner of display
• glutCreateWindow create window with title “simple”
• glutDisplayFunc display callback
• glutMainLoop enter infinite event loop

10/6/11

4

7
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

init.c

void init()
{
 glClearColor (0.0, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
}

black clear color
opaque window

fill/draw with white

viewing volume

8
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Coordinate Systems

• The units in glVertex are determined by the
application and are called object or problem
coordinates

• The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in the
image

• Internally, OpenGL will convert to camera (eye)
coordinates and later to screen coordinates

• OpenGL also uses some internal representations
that usually are not visible to the application

10/6/11

5

9
Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Camera

• OpenGL places a camera at the origin in
object space pointing in the negative z
direction

• The default viewing volume
 is a box centered at the
 origin with a side of
 length 2

1
0Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Orthographic Viewing

z=0

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

10/6/11

6

1
1Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Transformations and Viewing

• In OpenGL, projection is carried out by a
projection matrix (transformation)

• There is only one set of transformation functions
so we must set the matrix mode first

 glMatrixMode (GL_PROJECTION)

•  Transformation functions are incremental so we
start with an identity matrix and alter it with a
projection matrix that gives the view volume

 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

1
2Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Two- and three-
dimensional viewing

• In glOrtho(left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

• Two-dimensional vertex commands place all vertices
in the plane z=0

• If the application is in two dimensions, we can use the
function
 gluOrtho2D(left, right,bottom,top)
• In two dimensions, the view or clipping volume
becomes a clipping window

10/6/11

7

1
3Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

mydisplay.c

void mydisplay()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_POLYGON);
 glVertex2f(-0.5, -0.5);
 glVertex2f(-0.5, 0.5);
 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);
 glEnd();
 glFlush();
}

1
4Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Primitives

10/6/11

8

1
5Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Polygon Issues

• OpenGL will only display polygons correctly that are
-  Simple: edges cannot cross
- Convex: All points on line segment between two points in a

polygon are also in the polygon
-  Flat: all vertices are in the same plane

• User program can check if above true
- OpenGL will produce output if these conditions are violated

but it may not be what is desired

• Triangles satisfy all conditions

nonsimple polygon nonconvex polygon

1
6Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Attributes

• Attributes are part of the OpenGL state
and determine the appearance of objects

- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges
• Display vertices

10/6/11

9

1
7Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

RGB color

• Each color component is stored separately in
the frame buffer

• Usually 8 bits per component in buffer
• Note in glColor3f the color values range from
0.0 (none) to 1.0 (all), whereas in glColor3ub
the values range from 0 to 255

1
8Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Indexed Color

• Colors are indices into tables of RGB values
• Requires less memory

-  indices usually 8 bits
- not as important now

•  Memory inexpensive
•  Need more colors for shading

10/6/11

10

1
9Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Color and State

• The color as set by glColor becomes part of the
state and will be used until changed

- Colors and other attributes are not part of the
object but are assigned when the object is
rendered

• We can create conceptual vertex colors by code
such as

 glColor
 glVertex
 glColor
 glVertex

2
0Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Smooth Color

• Default is smooth shading
- OpenGL interpolates vertex colors across

visible polygons
• Alternative is flat shading

- Color of first vertex
determines fill color

• glShadeModel
(GL_SMOOTH)
or GL_FLAT

10/6/11

11

2
1Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Viewports

• Do not have use the entire window for the
image: glViewport(x,y,w,h)

• Values in pixels (screen coordinates)

