41«
“T'he University ol \

Programming with OpenGL
Part 2: Complete Programs

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

< Objectives

Ly of New Mexico

* Refine the first program

- Alter the default values

- Introduce a standard program structure
« Simple viewing

- Two-dimensional viewing as a special case of
three-dimensional viewing

* Fundamental OpenGL primitives
* Attributes

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

- Program Structure

ty of New Mexico

* Most OpenGL programs have a similar structure
that consists of the following functions
-main():
defines the callback functions
opens one or more windows with the required properties
enters event loop (last executable statement)
-init (): sets the state variables
Viewing
Attributes
- callbacks
Display function
Input and window functions

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

-~ simple.c revisited

Ly of New Mexico

*In this version, we shall see the same
output but we have defined all the relevant
state values through function calls using
the default values

*In particular, we set
- Colors
- Viewing conditions
- Window properties

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

*.."‘ main.c

#include <GL/glut.h> includes gl.h

int main(int argc, char** argv)

{
glutInit(&argc,argv) ;
glutInitDisplayMode (GLUT SINGLE | GLUT_RGB) ;
glutInitWindowSize (500,500) ;
glutInitWindowPosition(0,0) ; T
glutCreateWindow ("simple"); define window properties
glutDisplayFunc(mydisplay);\\\

display callback

init(); ~——— get OpenGL state

glutMainLoop() ;
) i

enter event loop

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

_*.."‘ GLUT functions

+glutInit allows application to get command line
arguments and initializes system

gluInitDisplayMode requests properties for the
window (the rendering context)

- RGB color

- Single buffering

- Properties logically ORed together
*glutWindowSize in pixels
*glutWindowPosition from top-left corner of display
*glutCreateWindow create window with title “simple”
*glutDisplayFunc display callback
*glutMainLoop enter infinite event loop

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

~ init.c

black clear color
void init()

opaque window
{ - paq

glClearColor (0.0, 0.0, 0.0, 1.0);
glColor3£(1.0, 1.0, 1.0); «— fill/draw with white
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity ()
glortho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

| AN

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

viewing volume

~ Coordinate Systems

Ly of New Mexico

* The units in glvertex are determined by the
application and are called object or problem
coordinates

* The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in the
image

* Internally, OpenGL will convert to camera (eye)
coordinates and later to screen coordinates

* OpenGL also uses some internal representations
that usually are not visible to the application

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

10/6/11

*l.‘ OpenGL Camera

ty of New Mexico

*OpenGL places a camera at the origin in
object space pointing in the negative z

direction |

« The default viewing volume y o
is a box centered at the P
origin with a side of /ﬁ -
length 2 /

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009 ¢

- Orthographic Viewing

Ly of New Mexico

In the default orthographic view, points are

projected forward along the z axis onto the
plane z=0

z=0
______________ | | ~Viewing rectangle
5 //

> x

7= /

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 0

,!... Transformations and Viewing

* In OpenGL, projection is carried out by a
projection matrix (transformation)

* There is only one set of transformation functions
so we must set the matrix mode first
glMatrixMode (GL_PROJECTION)

» Transformation functions are incremental so we
start with an identity matrix and alter it with a
projection matrix that gives the view volume

glLoadIdentity() ;
glortho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

” Two- and three-
e CliMeNsional viewing

*In glOrtho (left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

» Two-dimensional vertex commands place all vertices
in the plane z=0

« If the application is in two dimensions, we can use the
function

gluOrtho2D (left, right,bottom, top)

* In two dimensions, the view or clipping volume
becomes a clipping window

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

*l.' mydisplay.c

void mydisplay ()
{
glClear (GL_COLOR BUFFER BIT) ;
glBegin (GL_POLYGON) ;
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2£(0.5, 0.5);
glVertex2£(0.5, -0.5);
glEnd() ;
glFlush() ;

}

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009 3

- OpenGL Primitives

) e

GL_POLYGON

GL_POINTS
GL LINES GL_LINE_STRIP

AN : GL_LINE_LOOP
GL_TRIANGLES
‘ GL_QUAD_STRIP

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 4

10/6/11

- Polygon Issues

ty of New Mexico

* OpenGL will only display polygons correctly that are
- Simple: edges cannot cross

- Convex: All points on line segment between two points in a
polygon are also in the polygon

- Flat: all vertices are in the same plane
» User program can check if above true

- OpenGL will produce output if these conditions are violated
but it may not be what is desired

* Triangles satisfy all conditions *

nonsimple polygon nonconvex polygon

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009 5

Ly of New Mexico

*l.' Attributes

* Attributes are part of the OpenGL state
and determine the appearance of objects

- Color (points, lines, polygons)

- Size and width (points, lines)

- Stipple pattern (lines, polygons)

- Polygon mode
Display as filled: solid color or stipple pattern
Display edges
Display vertices

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009 6

10/6/11

*l.' RGB color

ty of New Mexico

« Each color component is stored separately in
the frame buffer

* Usually 8 bits per component in buffer

* Note in glColor3f£ the color values range from

0.0 (none) to 1.0 (all), whereas in glColor3ub
the values range from 0 to 255

Green

all

me buffer

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

*l.' Indexed Color

Ly of New Mexico

* Colors are indices into tables of RGB values
*Requires less memory
- indices usually 8 bits

- not as important now
Memory inexpensive
Need more colors for shading

Color Red
lookup talle
r.l:

Color Green [

ﬁ lcokup talple

Color Blue

lookup talle \\\\\\\\\\\\J

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

Frame buffer

0

10/6/11

*l.‘ Color and State

ty of New Mexico

* The color as set by glColor becomes part of the
state and will be used until changed

- Colors and other attributes are not part of the

object but are assigned when the object is
rendered

* We can create conceptual vertex colors by code
such as

glColor
glVertex
glColor
glVertex

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

*l.' Smooth Color

Ly of New Mexico

* Default is smooth shading

- OpenGL interpolates vertex colors across
visible polygons

* Alternative is flat shading
- Color of first vertex
determines fill color

*glShadeModel

(GL_SMOOTH)
or GL_FLAT

onNn

Angel: Interactive Computer Graphics 5SE © Addison-Wesley 2009

10/6/11

10

4«\
The University o

ty of New Mexico

Viewports

* Do not have use the entire window for the
image: glViewport (x,y,w, h)
Values in pixels (screen coordinates)

]
O

(

|

|-Viewport

|-Graphics window

Clipping window

l

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009

10/6/11

11

